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Thermal Conductivity of Mixtures of Polyatomic Gases at 
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The paper discusses the prediction of the thermal conductivity of gas mixtures 
containing polyatomic components at low and moderate density. The prediction 
scheme adopted is based upon the rigorous kinetic theory of gases and makes 
use of other thermophysical properties of the pure gases and binary mixtures in 
the evaluation of the thermal conductivity. Comparisons with accurate experi- 
mental data indicate that only for systems in which the mass ratio of the species 
is near unity and for which inelastic collisions are rare, is a reliable prediction of 
the mixture thermal conductivity at low density possible. On the other hand, the 
density dependence of the thermal conductivity is quite accurately represented 
for most systems. 
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1. I N T R O D U C T I O N  

During the last decade a scheme has been developed for prediction of the 
transport properties of the pure monatomic gases and their mixtures at low 
density [1, 2]. The procedure is founded upon the rigorous kinetic theory of 
such gases and a limited, well-chosen set of accurate measurements. As a 
result, it is now possible to calculate all of the transport properties of the 
monatomic gases and those of any of their multicomponent mixtures over a 
wide temperature range with an accuracy comparable with that of direct 
measurements [3]. Indeed, in the particular case of thermal conductivity 
this calculation scheme is predictive, in the sense that measurements of 
thermal conductivity are not required for its application, and the predic- 
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tions are considerably more accurate than all but the most recent measure- 
ments [3]. However, the fluids of greatest industrial significance contain 
polyatomic components, and for such systems the development of an 
analogous calculation scheme is not yet complete. This is because poly- 
atomic molecules interact through anisotropic pair potentials and store 
energy in internal modes of motion, and these two factors combine to 
complicate the rigorous kinetic theory analysis of gases containing such 
species [4]. Considerable progress has been made for both the viscosity and 
diffusion coefficients of polyatomic systems [5] because the formal kinetic 
theory results are identical with those for monatomic gases and because the 
special characteristics of polyatomic gases have only a minor influence on 
these properties. On the other hand, for the thermal conductivity, the 
internal energy of the molecules and its relaxation by the mechanism of 
inelastic collisions have a profound effect on the form of the kinetic theory 
results and upon the evaluation of the property. 

New experimental data for the thermal conductivity of gases have an 
estimated uncertainty which is at least one order of magnitude less than 
that of earlier measurements [6]. The results therefore provide an opportu- 
nity to examine just how well the available kinetic theory allows us to 
predict the thermal conductivity using independent experimental informa- 
tion. An examination of this kind for pure polyatomic gases at low density 
was carried out recently [7], and it revealed that satisfactory predictions can 
only be made for gases in which inelastic collisions are rare events. In this 
paper we extend the examination to gas mixtures involving polyatomic 
components. 

2. M E T H O D O L O G Y  FOR THE LIMIT OF ZERO DENSITY 

The most secure foundation for a predictive scheme for the transport 
properties of gases is a rigorous kinetic theory analysis of the problem. In 
the case of the thermal conductivity of polyatomic gas mixtures at low 
density, the best available calculation scheme of this type is based on the 
analysis performed by Monchick et al. [8] within the framework of the 
semiclassical kinetic theory of Wang Chang and Uhlenbeck [4]. For the 
purposes of prediction, the most convenient formulation of this analysis is 
that given by Monchick et al. [9], which relates the thermal conductivity of 
the gas mixture to other measurable properties of the system such as the 
viscosity and thermal conductivity of its components, diffusion coefficients, 
and internal heat capacities. The expression for the thermal conductivity 

0 for a binary mixture at low density, )~mi• may be written in the form [5] 

)~Omi x 0 = )kmix,HE "t'- ~ ( 1 )  
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0 where the principal term, ~ t m i x , H E  , is given by 

~k0mix,HE ,I ] 2 2 Xj D i int , i  

= ~.~176 + E [ x~ - Xi~176 1 + Z xiDi (2) 
i = I j = 1 int , j  

j ~ i  

and AX is a small term given by a rather cumbersome expression quoted 
elsewhere [5, 9]. The term X~ ) in Eq. (2) represents the translational 
contribution to the thermal conductivity and the second term the contribu- 
tion from internal energy. The term AX of Eq. (1) arises solely from the 
relaxation processes associated with inelastic collisions. In these expressions 
X/0 represents the thermal conductivity of the pure gas i and X~ the 
translational contribution to it. In addition, x i represents the mole fraction 
of component i in the mixture and Diint,j the diffusion coefficient for 
internal energy of species i throughj  [8, 9]. 

Because we are particularly interested here in the prediction of the 
mixture thermal conductivity, Eq. (1) has been written so that it automati- 
cally reproduces the thermal conductivity of the pure components, but even 
so it is not an exact result. First, the expression represents only a first-order 
approximation to the transport coefficient within the Chapman-Cowling 
solution method for the Wang Chang and Uhlenbeck equation [4]. Second, 
the Wang Chang and Uhlenbeck theory itself is incomplete because it 
neglects the spin polarization resulting from imposition of a temperature 
gradient on a gas in which there are anisotropic interactions [10]. Finally, in 
deriving Eq. (1), Monchick et al. [9] found it necessary to neglect complex 
molecular collisions in which both molecules change their internal state or 
both internal modes of one molecule change in one collision. From the 
present point of view, the most important of these deficiencies is the 
first-order nature of the formulation because it is well known that for 
monatomic mixtures the use of the equivalent first-order formula can lead 
to substantial underestimates of the mixture thermal conductivity [11]. 

In order to make use of Eq. (1) for the prediction of the mixture 
thermal conductivity, it is necessary to employ a number of physical 
properties. Whenever possible these quantities are obtained from experi- 
ment, but in several cases it is possible to do no more than make sensible 
estimates. Thus, the pure component thermal conductivity X~ as well 
as the "interaction" thermal conductivity, X~ may be obtained from 
viscosity data with the aid of the result [5, 9] 

X~176 = 15(mi + m j ) k  
8 m i m j  - "qij (3) 
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in which TO is the "interaction" viscosity [5], and m i is the molecular mass 
of species i. The remaining quantities required to evaluate the contribution 
X~ are the collision integral ratios A~ and Bff [5] and the diffusion 
coefficients for internal energy, D i intj" In principle, these quantities, which 
are functionals of the intermolecular pair potentials in the gas, contain 
contributions from inelastic collisions. However, it is not yet possible to 
calculate them exactly on a routine basis, so that in most cases it is 
necessary to employ approximations based on purely elastic collision re- 

* may then be taken from the sults. The collision integral ratio s Aft and ~) 
correlations of the extended law of corresponding states [5] and the diffu- 
sion coefficients of internal energy equated to the diffusion coefficients for 
mass [9], so that 

3A~j (m i + mj) 
Diint'j= Do'-  5 mimj % (4) 

For the pure component values of D;int, i, it is usually possible to improve 
upon this assignment because a value may be deduced from an analysis of 
the pure component thermal conductivity [7]. 

The explicit effects of inelastic collisions on the mixture thermal 
conductivity are contained in the term AX whose evaluation requires a 
knowledge of the internal heat capacities of the pure components Cint, i and 
the four collision numbers for internal energy relaxation in the gas ~ .  This 
collision number represents the number of collisions necessary for the 
relaxation of internal energy of species i by collision with species j .  The 
heat capacities are readily available from standard tabulations [12], and the 
collision numbers for the pure gases, ~ii, have usually been determined 
experimentally [13]. However, the collision numbers for cross-relaxation, fy, 
must be estimated and, in most cases, the best that can be done is to use the 
assignment [9] 

~ij = ~ii, ~ji = l~jj (5) 

3. METHODOLOGY FOR ELEVATED DENSITIES 

At elevated densities the kinetic theory is even less well developed than 
for the dilute gas limit. The most successful approach to the description of 
the transport properties of dense gases is based on a heuristic modification 
of the Thorne-Enskog equations for the transport properties of a rigid 
sphere gas by Mason and his collaborators [14]. According to their calcula- 
tion scheme the thermal conductivity of a dense polyatomic gas mixture is 
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written 

;kmi x = ~mix(mOn) q- ?~mi• (6) 

The translational contribution, kmix(mOn), and the internal contribution 
kmix(int), correspond to the two terms of the Hirschfelder-Eucken result for 
the dilute gas with an allowance for the increased collision frequency in the 
gas which follows from the elevated density. There is no explicit inelastic 
contribution to the thermal conductivity of the mixture in this formulation, 
so that it is inherently less accurate than the dilute gas expression. 

The effect of increased density on the transport properties of a binary 
gas mixture is contained within four pseudo-radial distribution functions, 
~y, for molecules i and j ,  which enter into the expressions for ~kmix(mon ) 
and kmi~(int). These radial distribution functions can be obtained from the 
corresponding quantities for the pure gases by means of a combination rule 
based on the Percus-Yevick equation for hard spheres [15], provided that a 
hard-sphere collision diameter, %, is defined for each interaction. In turn, 
the radial distribution functions for the pure gases may be obtained by 
application of Eq. (6) to the thermal conductivity data for each pure 
component. Thus, Eq. (6) is employed for interpolation between the ther- 
mal conductivity of the pure gases at constant molar density. 

It follows from this description that the only additional quantities 
required for the evaluation of the thermal conductivity of gas mixtures at 
elevated density are the thermal conductivities of the pure components at 
the density in question and the rigid sphere collision diameters %. The 
former are derived from experiment, whereas according to the modified 
Enskog procedure, the latter may be derived from second virial coefficient 
data [16] by means of the equation 

4~ro~/5 = y/j = 6[ Bij + T(dBij /dT)]/5 (7) 

If the interaction second virial coefficients for a particular mixture are not 
available, an appropriate estimation of the mean-free path shortening 
parameter, 7~j, may be obtained from the simple empirically verified 
combination rule [14] 

~ij = (~ili/3 "~- ~j1/3)3/8 (8) 

4. MIXTURES SELECTED FOR S T U D Y  

Studies of pure polyatomic gases have shown that the frequency of 
inelastic collisions in the gas has a large effect upon our ability to predict its 
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thermal conductivity from other properties [7]. Furthermore, it has been 
established by work on monatomic gas mixtures that for systems in which 
the mass ratio of the species differs substantially from unity, the first-order 
kinetic theory formulas underestimate the thermal conductivity [11]. We 
therefore expect that for polyatomic gas mixtures, the accuracy of the 
prediction of the thermal conductivity will be influenced by both of these 
factors, and accordingly we select binary mixtures for study, which encom- 
pass as wide a range of them as possible. 

The complete list of the 10 systems studied, for each of which thermal 
conductivity and viscosity data with an uncertainty of less than _+ 0.3% are 
available, is given in Table I, together with all of the values used for the 
prediction of the thermal conductivity. All of the experimental data have 
been taken from the results of our own work [6, 17-25]. At one extreme, 
He /H  2 and D2/H 2 represent cases in which inelastic collisions are rare and 
the mass ratio is near unity. At the other extreme, CO2/He represents a 
system in which the mass ratio is very different from unity and inelastic 
collisions among the CO 2 molecules are frequent (fll small). 

5. RESULTS IN THE LIMIT OF ZERO DENSITY 

Figure 1 contains a plot of the deviations of the experimental thermal 
conductivity data for the systems H e / H  2 and Ar /H 2 from the predictions 
of Eq. (1). In both cases the Hirschfelder-Eucken result (~X -- 0) is identi- 
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Fig. 1. Deviations of the experimental thermal conductivity from the predicted values. 0 ;  
H e - H  2 [19], T = 300.65 K; II; Ar-H2[21], T = 308.15 K. 
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Fig. 2. Deviations of the experimental thermal conductivity from the predicted values. 
N2-Ne:  S,  experimental data [20]; , Hirschfelder-Eucken result. N2-He:  I ,  experi- 
mental data [20]; . . . .  , Hirschfelder-Eucken result. 

cal with that for the full form of Eq. (1) owing to the rarity of inelastic 
collisions. For H e / H  2 the calculation underestimates the thermal conduc- 
tivity by no more than 0.7%, whereas for A r / H  2 the discrepancy amounts 
to 2.5%. Because inelastic collisions are rare in both cases, the difference is 
attributed principally to the effect of the disparate masses in the second 
case. Figure 2 contains a comparison with the results for mixtures of neon 
and helium with nitrogen for which inelastic components are relatively 
frequent. In these cases the predictions of the full form of Eq. (1) are worse 
than in the previous examples. For the helium-nitrogen system it seems 
likely that this is again attributable to the effect of the species mass ratio, 
but for neon-nitrogen it is much more likely to be a result of the failure to 
treat inelastic collisions properly. It is interesting to note that the Hirsch- 
felder-Eucken results, also included in Fig. 2, more nearly reproduce the 
experimental data than do the results of the full Eq. (1). Finally, among the 
monatomic-polyatomic systems, Fig. 3 contains the results for mixtures of 
helium and argon with carbon dioxide, for which inelastic collisions are 
frequent. For the CO2/Ar system the deviations of the experimental data 
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Fig. 3. Deviations of the experimental thermal conductivity from the predicted values. 
COz-Ar: Q, experimental data [23]; , Hirschfelder-Eucken result. CO2-He: I 
experimental data [231; . . . .  , Hirschfelder-Eucken result. 

from the predictions are quite large (~3%), and even their qualitative 
behavior cannot be described by Eq. (1) [26]. For H e / C O  2, a system with 5. 
species mass ratio of 11, the deviations are even more pronounced. Again 
the Hirschfelder-Eucken result more closely reproduces the experimental 
data. 

Turning to mixtures of two polyatomics, Fig. 4 contains results for 
Dz-H 2 and N z - H  2. For the former system, in which the mass ratio is quite 
close to unity and inelastic collisions are rare, the agreement of prediction 
and experiment is good. However, for the latter system, the species' masses 
are very different, N 2 undergoes quite frequent inelastic collisions, and the 
predictions are very much worse. Finally, in Fig. 5 we consider mixtures in 
which the mass ratio is very close to unity and inelastic collisions are 
relatively frequent. Here, the deviations from the predictions are much 
smaller than for the other systems considered. 

A number of general observations may be made about these results. 
The full form of Eq. (1) almost always underestimates the experimental 
thermal conductivity, and the extent of the underestimation grows as the 
frequency of. inelastic collisions in one or both of the gases increases and as 
the mass ratio of the species departs from unity. Only for cases in which the 
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mass ratio is near unity and inelastic collisions are rare is an accurate 
prediction of the thermal conductivity possible. The effect of the mass ratio 
is likely to be a result of the use of a first-order kinetic theory formulation, 
whereas the observation concerning inelastic collisions indicates that when 
such collisions are frequent, it is inappropriate to employ values for Ay, By, 
and D iint,j computed on the basis of elastic collisions only. In general, the 
simpler and less correct Hirschfelder-Eucken result reproduces the experi- 
mental data more successfully, but this is probably fortuitous. 

The agreement between calculation and experiment can be signifi- 
cantly improved if empirical adjustments are made to the quantities A~ and 
B,~. Indeed, the calculations are particularly sensitive to B* when the 
species mass ratio is very different from unity. Such adjustments can serve 
as a useful mechanism for the correlation of experimental data; however, 
without theoretical guidance, they are of little value in the development of a 
predictive scheme. 

6. RESULTS AT ELEVATED DENSITIES 

In the limit of zero density, the high density formulation of Mason et 
al. [14] reduces to the Hirschfelder-Eucken result of Eq. (2). Consequently, 
the predictions of the absolute values of the thermal conductivity at 
elevated densities suffer from the same errors associated with the predic- 
tions of the zero-density thermal conductivity. In order to examine the 
predictions of the density dependence of the mixture thermal conductivity 
in isolation, it is therefore preferable to consider the ratio 0 )kmix/)kmi x for a 
selection of the systems studied earlier. Figure 6 contains a plot of the ratio 
as a function of density for the systems neon-nitrogen and methane- 
nitrogen for which the mass ratio is near unity. The predicted result is in 
good agreement with that observed experimentally, the greatest deviation 
amounting to 1% in the thermal conductivity itself. Figure 7 contains a 
similar plot for the argon-hydrogen system where the agreement is even 
better despite the disparate masses of the two species. These results suggest 
that given an accurate prediction of the zero-density thermal conductivity 
of the mixture, the scheme of Mason et al. [14] may be employed to extend 
the data to higher densities, even for systems in which inelastic collisions 
are quite frequent and the species differ considerably in mass. 

)kmix/~mi  x for mixtures of helium and carbon dioxide In Fig. 8 the ratio 0 
is plotted as a function of density. In this case there is evidently a 
qualitative difference between the predicted behavior and that observed 
experimentally, even though the quantitative discrepancy in the thermal 
conductivity does not exceed 2%. It is likely that the qualitative difference 
arises because, under the conditions of interest, carbon dioxide is near its 
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critical state where thefthermal conductivity of t h e  pure gas exhibits 
anomalous behavior. This behavior is not incorporated into the formalism 
of the Thorne-Enskog equations, and it is therefore to be expected that the 
theory will not be adequate in such circumstances [23]. 

7. CONCLUSIONS 

For binary gas mixtures containing polyatomic components in which 
the species have a similar mass and for which inelastic collisions are rare, it 
is possible to perform reliable predictions of the thermal conductivity which 
have an accuracy comparable with that of direct measurement. As the 
frequency of inelastic collisions increases and the masses of the species 
become more disparate, the accuracy of the predictions decreases. In the 
worst case studied, the deviations from accurate data amount to 7%, which 
could be significant in engineering design calculations. Moreover, for all of 
the systems studied here, a considerable body of accurate data on other 
thermophysical properties is available which may be utilized in the predic- 
tion scheme. For other systems of industrial importance, this is rarely the 
case, and the predictions in these cases will be correspondingly worse. 

The results of the present examination indicate that future effort 
should be devoted primarily to the improvement of the kinetic theory 
description of polyatomic gas mixtures in the limit of zero density. The 
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m e t h o d s  a v a i l a b l e  for  p r e d i c t i o n  at  e l e v a t e d  dens i ty  y ie ld  essent ia l ly  the  

co r r ec t  dens i ty  d e p e n d e n c e  of  the  t h e r m a l  c o n d u c t i v i t y  e x c e p t  for  sys tems  

i n v o l v i n g  a c o m p o n e n t  n e a r  the  cr i t ica l  state.  
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